iapws.iapws95 module
Implemented multiparameter equation of state as a Helmholtz free energy:
- iapws.iapws95._phir(tau, delta, coef)[source]
Residual contribution to the adimensional free Helmholtz energy
- Parameters:
- Returns:
fir – Adimensional free Helmholtz energy
- Return type:
References
IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, September 2016, Table 5 http://www.iapws.org/relguide/IAPWS-95.html
- iapws.iapws95._phird(tau, delta, coef)[source]
Residual contribution to the adimensional free Helmholtz energy, delta derivative
- Parameters:
- Returns:
fird –
\[\left.\frac{\partial \phi^r_{\delta}}{\partial \delta}\right|_{\tau}\]- Return type:
References
IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, September 2016, Table 5 http://www.iapws.org/relguide/IAPWS-95.html
- iapws.iapws95._phirt(tau, delta, coef)[source]
Residual contribution to the adimensional free Helmholtz energy, tau derivative
- Parameters:
- Returns:
firt –
\[\left.\frac{\partial \phi^r_{\tau}}{\partial \tau}\right|_{\delta}\]- Return type:
References
IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, September 2016, Table 5 http://www.iapws.org/relguide/IAPWS-95.html
- class iapws.iapws95.MEoS(**kwargs)[source]
General implementation of multiparameter equation of state. From this derived all child class specified per individual compounds
- Parameters:
T (float) – Temperature, [K]
P (float) – Pressure, [MPa]
rho (float) – Density, [kg/m³]
v (float) – Specific volume, [m³/kg]
h (float) – Specific enthalpy, [kJ/kg]
s (float) – Specific entropy, [kJ/kgK]
u (float) – Specific internal energy, [kJ/kg]
x (float) – Vapor quality, [-]
l (float, optional) – Wavelength of light, for refractive index, [μm]
rho0 (float, optional) – Initial value of density, to improve iteration, [kg/m³]
T0 (float, optional) – Initial value of temperature, to improve iteration, [K]
x0 (Initial value of vapor quality, necessary in bad input pair definition) – where there are two valid solution (T-h, T-s)
Notes
It needs two incoming properties of T, P, rho, h, s, u.
v as a alternate input parameter to rho
T-x, P-x, preferred input pair to specified a point in two phases region
The calculated instance has the following properties:
P: Pressure, [MPa]
T: Temperature, [K]
x: Vapor quality, [-]
g: Specific Gibbs free energy, [kJ/kg]
a: Specific Helmholtz free energy, [kJ/kg]
v: Specific volume, [m³/kg]
r: Density, [kg/m³]
h: Specific enthalpy, [kJ/kg]
u: Specific internal energy, [kJ/kg]
s: Specific entropy, [kJ/kg·K]
cp: Specific isobaric heat capacity, [kJ/kg·K]
cv: Specific isochoric heat capacity, [kJ/kg·K]
cp_cv: Heat capacity ratio, [-]
Z: Compression factor, [-]
fi: Fugacity coefficient, [-]
f: Fugacity, [MPa]
gamma: Isoentropic exponent, [-]
alfav: Isobaric cubic expansion coefficient, [1/K]
kappa: Isothermal compressibility, [1/MPa]
kappas: Adiabatic compresibility, [1/MPa]
alfap: Relative pressure coefficient, [1/K]
betap: Isothermal stress coefficient, [kg/m³]
joule: Joule-Thomson coefficient, [K/MPa]
betas: Isoentropic temperature-pressure coefficient, [-]
Gruneisen: Gruneisen parameter, [-]
virialB: Second virial coefficient, [m³/kg]
virialC: Third virial coefficient, [m⁶/kg²]
dpdT_rho: Derivatives, dp/dT at constant rho, [MPa/K]
dpdrho_T: Derivatives, dp/drho at constant T, [MPa·m³/kg]
drhodT_P: Derivatives, drho/dT at constant P, [kg/m³·K]
drhodP_T: Derivatives, drho/dP at constant T, [kg/m³·MPa]
dhdT_rho: Derivatives, dh/dT at constant rho, [kJ/kg·K]
dhdP_T: Isothermal throttling coefficient, [kJ/kg·MPa]
dhdT_P: Derivatives, dh/dT at constant P, [kJ/kg·K]
dhdrho_T: Derivatives, dh/drho at constant T, [kJ·m³/kg²]
dhdrho_P: Derivatives, dh/drho at constant P, [kJ·m³/kg²]
dhdP_rho: Derivatives, dh/dP at constant rho, [kJ/kg·MPa]
kt: Isothermal Expansion Coefficient, [-]
ks: Adiabatic Compressibility, [1/MPa]
Ks: Adiabatic bulk modulus, [MPa]
Kt: Isothermal bulk modulus, [MPa]
v0: Ideal specific volume, [m³/kg]
rho0: Ideal gas density, [kg/m³]
u0: Ideal specific internal energy, [kJ/kg]
h0: Ideal specific enthalpy, [kJ/kg]
s0: Ideal specific entropy, [kJ/kg·K]
a0: Ideal specific Helmholtz free energy, [kJ/kg]
g0: Ideal specific Gibbs free energy, [kJ/kg]
cp0: Ideal specific isobaric heat capacity, [kJ/kg·K]
cv0: Ideal specific isochoric heat capacity, [kJ/kg·K]
w0: Ideal speed of sound, [m/s]
gamma0: Ideal isoentropic exponent, [-]
w: Speed of sound, [m/s]
mu: Dynamic viscosity, [Pa·s]
nu: Kinematic viscosity, [m²/s]
k: Thermal conductivity, [W/m·K]
alfa: Thermal diffusivity, [m²/s]
sigma: Surface tension, [N/m]
epsilon: Dielectric constant, [-]
n: Refractive index, [-]
Prandt: Prandtl number, [-]
Pr: Reduced Pressure, [-]
Tr: Reduced Temperature, [-]
Hvap: Vaporization heat, [kJ/kg]
Svap: Vaporization entropy, [kJ/kg·K]
Z_rho: \((Z-1)/\rho\), [m³/kg]
IntP: Internal pressure, [MPa]
invT: Negative reciprocal temperature, [1/K]
hInput: Specific heat input, [kJ/kg]
- Attributes:
- Gas
- Gruneisen
- Hvap
- IntP
- Ks
- Kt
- Liquid
- M
- P
- Pc
- Pr
- Prandt
- Svap
- T
- Tc
- Tr
- Tt
- Vapor
- Z
- Z_rho
- a
- a0
- alfa
- alfap
- alfav
- betap
- betas
calculable
Check if inputs are enough to define state
- cp
- cp0
- cp0_cv
- cp_cv
- cv
- cv0
- dhdP_T
- dhdP_rho
- dhdT_P
- dhdT_rho
- dhdrho_P
- dhdrho_T
- dpdT_rho
- dpdrho_T
- drhodP_T
- drhodT_P
- epsilon
- f
- fi
- g
- g0
- gamma
- gamma0
- h
- h0
- hInput
- invT
- joule
- k
- kappa
- ks
- kt
- mu
- n
- name
- nu
- phase
- rho
- rho0
- rhoc
- s
- s0
- sigma
- u
- u0
- v
- v0
- virialB
- virialC
- w
- x
Methods
__call__
(**kwargs)Make instance callable to can add input parameter one to one
calculo
()Calculate procedure
derivative
(z, x, y, fase)Wrapper derivative for custom derived properties where x, y, z can be: P, T, v, rho, u, h, s, g, a
fill
(fase, estado)Fill phase properties
from_list
(p1name, p1val, p2name, p2val)Speed up method using multiprocessing for multiple point calculation with a fixed input and changing other input parameter
- Fi0 = {}
- _constants = {}
- _Pv = {}
- _rhoL = {}
- _rhoG = {}
- _surf = {}
- name = None
- M = None
- Tc = None
- Pc = None
- rhoc = None
- Tt = None
- status = 0
- msg = 'Undefined'
- _mode = None
- Liquid = None
- Gas = None
- Vapor = None
- T = None
- Tr = None
- P = None
- Pr = None
- x = None
- phase = None
- sigma = None
- virialB = None
- virialC = None
- Hvap = None
- Svap = None
- invT = None
- v0 = None
- rho0 = None
- h0 = None
- u0 = None
- s0 = None
- a0 = None
- g0 = None
- cp0 = None
- cv0 = None
- cp0_cv = None
- gamma0 = None
- classmethod from_list(p1name, p1val, p2name, p2val)[source]
Speed up method using multiprocessing for multiple point calculation with a fixed input and changing other input parameter
- Parameters:
- Returns:
states – list with calculated states
- Return type:
- kwargs = {'P': 0.0, 'T': 0.0, 'T0': None, 'h': None, 'l': 0.5893, 'rho': 0.0, 'rho0': None, 's': None, 'u': None, 'v': 0.0, 'x': None, 'x0': 0.5}
- property calculable
Check if inputs are enough to define state
- derivative(z, x, y, fase)[source]
Wrapper derivative for custom derived properties where x, y, z can be: P, T, v, rho, u, h, s, g, a
- _Helmholtz(rho, T)[source]
Calculated properties from helmholtz free energy and derivatives
- Parameters:
- Returns:
prop –
- Dictionary with calculated properties:
fir: [-]
fird: ∂fir/∂δ|τ
firdd: ∂²fir/∂δ²|τ
delta: Reducen density rho/rhoc, [-]
P: Pressure, [kPa]
h: Enthalpy, [kJ/kg]
s: Entropy, [kJ/kgK]
cv: Isochoric specific heat, [kJ/kgK]
alfav: Thermal expansion coefficient, [1/K]
betap: Isothermal compressibility, [1/kPa]
- Return type:
References
IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, September 2016, Table 3 http://www.iapws.org/relguide/IAPWS-95.html
- _phi0(tau, delta)[source]
Ideal gas Helmholtz free energy and derivatives
- Parameters:
- Returns:
prop – fio, [-] fiot: ∂fio/∂τ|δ fiod: ∂fio/∂δ|τ fiott: ∂²fio/∂τ²|δ fiodt: ∂²fio/∂τ∂δ fiodd: ∂²fio/∂δ²|τ
- Return type:
dictionary with ideal adimensional helmholtz energy and deriv
References
IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, September 2016, Table 4 http://www.iapws.org/relguide/IAPWS-95.html
- _phir(tau, delta)[source]
Residual contribution to the free Helmholtz energy
- Parameters:
- Returns:
prop –
- Dictionary with residual adimensional helmholtz energy and deriv:
fir
firt: ∂fir/∂τ|δ,x
fird: ∂fir/∂δ|τ,x
firtt: ∂²fir/∂τ²|δ,x
firdt: ∂²fir/∂τ∂δ|x
firdd: ∂²fir/∂δ²|τ,x
- Return type:
References
IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, September 2016, Table 5 http://www.iapws.org/relguide/IAPWS-95.html
- _derivDimensional(rho, T)[source]
Calcule the dimensional form or Helmholtz free energy derivatives
- Parameters:
- Returns:
prop –
Dictionary with residual helmholtz energy and derivatives:
fir, [kJ/kg]
firt: ∂fir/∂T|ρ, [kJ/kgK]
fird: ∂fir/∂ρ|T, [kJ/m³kg²]
firtt: ∂²fir/∂T²|ρ, [kJ/kgK²]
firdt: ∂²fir/∂T∂ρ, [kJ/m³kg²K]
firdd: ∂²fir/∂ρ²|T, [kJ/m⁶kg]
- Return type:
References
IAPWS, Guideline on an Equation of State for Humid Air in Contact with Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater, Table 7, http://www.iapws.org/relguide/SeaAir.html
- _surface(T)[source]
Generic equation for the surface tension
Notes
- Need a _surf dict in the derived class with the parameters keys:
sigma: coefficient exp: exponent
- classmethod _Vapor_Pressure(T)[source]
Auxiliary equation for the vapour pressure
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, Eq.1
- classmethod _Liquid_Density(T)[source]
Auxiliary equation for the density of saturated liquid
- Parameters:
T (float) – Temperature, [K]
- Returns:
rho – Saturated liquid density, [kg/m³]
- Return type:
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, Eq.2
- classmethod _Vapor_Density(T)[source]
Auxiliary equation for the density of saturated vapor
- Parameters:
T (float) – Temperature, [K]
- Returns:
rho – Saturated vapor density, [kg/m³]
- Return type:
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, Eq.3
- classmethod _dPdT_sat(T)[source]
Auxiliary equation for the dP/dT along saturation line
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, derived from Eq.1
- iapws.iapws95.mainClassDoc()[source]
Function decorator used to automatic adiction of base class MEoS in subclass __doc__
- class iapws.iapws95.IAPWS95(**kwargs)[source]
Implementation of IAPWS Formulation 1995 for ordinary water substance, (revised release of 2016), for internal procedures, see MEoS base class
Examples
>>> water=IAPWS95(T=300, rho=996.5560) >>> water.P, water.cv, water.w, water.s 0.0992418350 4.13018112 1501.51914 0.393062643
>>> water=IAPWS95(T=500, rho=0.435) >>> water.P, water.cv, water.w, water.s 0.0999679423 1.50817541 548.31425 7.944882714
>>> water=IAPWS95(T=900., P=700) >>> water.rho, water.cv, water.w, water.s 870.7690 2.66422350 2019.33608 4.17223802
>>> water=IAPWS95(T=300., P=0.1) >>> water.P, water.rho, water.h, water.s, water.cp, water.w, water.virialB 0.10000 996.56 112.65 0.39306 4.1806 1501.5 -0.066682
>>> water=IAPWS95(T=500., P=0.1) >>> water.P, water.rho, water.h, water.s, water.cp, water.w, water.virialB 0.10000 0.43514 2928.6 7.9447 1.9813 548.31 -0.0094137
>>> water=IAPWS95(T=450., x=0.5) >>> water.T, water.P, water.rho, water.h, water.s, water.virialB 450.00 0.93220 9.5723 1761.8 4.3589 -0.013028
>>> water=IAPWS95(P=1.5, rho=1000.) >>> water.T, water.rho, water.h, water.s, water.cp, water.w, water.virialB 286.44 1000.0 57.253 0.19931 4.1855 1462.1 -0.085566
>>> water=IAPWS95(h=3000, s=8.) >>> water.T, water.P, water.h, water.s, water.cp, water.w, water.virialB 536.24 0.11970 3000.0 8.0000 1.9984 567.04 -0.0076606
>>> water=IAPWS95(h=150, s=0.4) >>> water.T, water.P, water.rho, water.h, water.s, water.cp, water.w 301.27 35.50549 1011.48 150.00 0.40000 4.0932 1564.1
>>> water=IAPWS95(T=450., rho=300) >>> water.T, water.P, water.rho, water.h, water.s, water.x, water.virialB 450.00 0.93220 300.00 770.82 2.1568 0.010693 -0.013028
>>> water=IAPWS95(rho=300., P=0.1) >>> water.T, water.P, water.rho, water.h, water.s, water.x, water.virialB 372.76 0.10000 300.00 420.56 1.3110 0.0013528 -0.025144
>>> water=IAPWS95(h=1500., P=0.1) >>> water.T, water.P, water.rho, water.h, water.s, water.x, water.virialB 372.76 0.10000 1.2303 1500.0 4.2068 0.47952 -0.025144
>>> water=IAPWS95(s=5., P=3.5) >>> water.T, water.P, water.rho, water.h, water.s, water.x, water.virialB 515.71 3.5000 25.912 2222.8 5.0000 0.66921 -0.0085877
>>> water=IAPWS95(T=500., u=900) >>> water.P, water.rho, water.u, water.h, water.s, water.cp, water.w 108.21 903.62 900.00 1019.8 2.4271 4.1751 1576.0
>>> water=IAPWS95(P=0.3, u=1550.) >>> water.T, water.P, water.rho, water.u, water.h, water.s, water.x 406.67 0.30000 3.3029 1550.0 1640.8 4.3260 0.49893
>>> water=IAPWS95(rho=300, h=1000.) >>> water.T, water.P, water.rho, water.u, water.h, water.s, water.x 494.92 2.3991 300.00 992.00 1000.0 2.6315 0.026071
>>> water=IAPWS95(rho=30, s=8.) >>> water.T, water.P, water.rho, water.u, water.h, water.s, water.cp 1562.42 21.671 30.000 4628.5 5350.9 8.0000 2.7190
>>> water=IAPWS95(rho=30, s=4.) >>> water.T, water.P, water.rho, water.u, water.h, water.s, water.x 495.00 2.4029 30.000 1597.3 1677.4 4.0000 0.39218
>>> water=IAPWS95(rho=300, u=1000.) >>> water.T, water.P, water.rho, water.u, water.h, water.s, water.x 496.44 2.4691 300.000 1000.0 1008.2 2.6476 0.02680
>>> water=IAPWS95(s=3., h=1000.) >>> water.T, water.P, water.rho, water.u, water.h, water.s, water.x 345.73 0.034850 0.73526 952.60 1000.0 3.0000 0.29920
>>> water=IAPWS95(u=995., h=1000.) >>> water.T, water.P, water.rho, water.u, water.h, water.s, water.x 501.89 2.7329 546.58 995.00 1000.0 2.6298 0.00866
>>> water=IAPWS95(u=1000., s=3.) >>> water.T, water.P, water.rho, water.u, water.h, water.s, water.x 371.24 0.094712 1.99072 1000.00 1047.6 3.0000 0.28144
References
IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, September 2016, http://www.iapws.org/relguide/IAPWS-95.html
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html
IAPWS, Guideline on a Low-Temperature Extension of the IAPWS-95 Formulation for Water Vapor, http://www.iapws.org/relguide/LowT.html
IAPWS, Revised Advisory Note No. 3: Thermodynamic Derivatives from IAPWS Formulations, http://www.iapws.org/relguide/Advise3.pdf
- Attributes:
- Gas
- Gruneisen
- Hvap
- IntP
- Ks
- Kt
- Liquid
- P
- Pr
- Prandt
- Svap
- T
- Tr
- Vapor
- Z
- Z_rho
- a
- a0
- alfa
- alfap
- alfav
- betap
- betas
calculable
Check if inputs are enough to define state
- cp
- cp0
- cp0_cv
- cp_cv
- cv
- cv0
- dhdP_T
- dhdP_rho
- dhdT_P
- dhdT_rho
- dhdrho_P
- dhdrho_T
- dpdT_rho
- dpdrho_T
- drhodP_T
- drhodT_P
- epsilon
- f
- fi
- g
- g0
- gamma
- gamma0
- h
- h0
- hInput
- invT
- joule
- k
- kappa
- ks
- kt
- mu
- n
- nu
- phase
- rho
- rho0
- s
- s0
- sigma
- u
- u0
- v
- v0
- virialB
- virialC
- w
- x
Methods
__call__
(**kwargs)Make instance callable to can add input parameter one to one
calculo
()Calculate procedure
derivative
(z, x, y, fase)Wrapper derivative for custom derived properties where x, y, z can be: P, T, v, rho, u, h, s, g, a
fill
(fase, estado)Fill phase properties
from_list
(p1name, p1val, p2name, p2val)Speed up method using multiprocessing for multiple point calculation with a fixed input and changing other input parameter
- name = 'water'
- CASNumber = '7732-18-5'
- formula = 'H2O'
- synonym = 'R-718'
- Tc = 647.096
- rhoc = 322.0
- Pc = 22.064
- M = 18.015268
- Tt = 273.16
- Tb = 373.1243
- f_acent = 0.3443
- momentoDipolar = 1.855
- Fi0 = {'ao_exp': [0.012436, 0.97315, 1.2795, 0.96956, 0.24873], 'ao_log': [1, 3.00632], 'ao_pow': [-8.3204464837497, 6.6832105275932], 'pow': [0, 1], 'titao': [1.28728967, 3.53734222, 7.74073708, 9.24437796, 27.5075105]}
- _constants = {'A': [0.32, 0.32], 'B': [0.2, 0.2], 'C': [28, 32], 'D': [700, 800], 'R': 8.314371357587, 'a4': [3.5, 3.5], 'alfa3': [20, 20, 20], 'b4': [0.85, 0.95], 'beta3': [150, 150, 250], 'beta4': [0.3, 0.3], 'c2': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 6, 6, 6, 6], 'd1': [1, 1, 1, 2, 2, 3, 4], 'd2': [1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 9, 10, 11, 13, 15, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 9, 9, 9, 9, 9, 10, 10, 12, 3, 4, 4, 5, 14, 3, 6, 6, 6], 'd3': [3, 3, 3], 'epsilon3': [1.0, 1.0, 1.0], 'gamma2': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'gamma3': [1.21, 1.21, 1.25], 'nr1': [0.012533547935523, 7.8957634722828, -8.7803203303561, 0.31802509345418, -0.26145533859358, -0.0078199751687981, 0.0088089493102134], 'nr2': [-0.66856572307965, 0.20433810950965, -6.6212605039687e-05, -0.19232721156002, -0.25709043003438, 0.16074868486251, -0.040092828925807, 3.9343422603254e-07, -7.5941377088144e-06, 0.00056250979351888, -1.5608652257135e-05, 1.1537996422951e-09, 3.6582165144204e-07, -1.3251180074668e-12, -6.2639586912454e-10, -0.10793600908932, 0.017611491008752, 0.22132295167546, -0.40247669763528, 0.58083399985759, 0.0049969146990806, -0.031358700712549, -0.74315929710341, 0.4780732991548, 0.020527940895948, -0.13636435110343, 0.014180634400617, 0.0083326504880713, -0.029052336009585, 0.038615085574206, -0.020393486513704, -0.0016554050063734, 0.0019955571979541, 0.00015870308324157, -1.638856834253e-05, 0.043613615723811, 0.034994005463765, -0.076788197844621, 0.022446277332006, -6.2689710414685e-05, -5.5711118565645e-10, -0.19905718354408, 0.31777497330738, -0.11841182425981], 'nr3': [-31.306260323435, 31.546140237781, -2521.3154341695], 'nr4': [-0.14874640856724, 0.31806110878444], 't1': [-0.5, 0.875, 1, 0.5, 0.75, 0.375, 1], 't2': [4, 6, 12, 1, 5, 4, 2, 13, 9, 3, 4, 11, 4, 13, 1, 7, 1, 9, 10, 10, 3, 7, 10, 10, 6, 10, 10, 1, 2, 3, 4, 8, 6, 9, 8, 16, 22, 23, 23, 10, 50, 44, 46, 50], 't3': [0, 1, 4]}
- _Pv = {'ao': [-7.85951783, 1.84408259, -11.7866497, 22.6807411, -15.9618719, 1.80122502], 'exp': [1, 1.5, 3, 3.5, 4, 7.5]}
- _rhoL = {'ao': [1.99274064, 1.09965342, -0.510839303, -1.75493479, -45.5170352, -674694.45], 'eq': 2, 'exp': [1, 2, 5, 16, 43, 110]}
- _rhoG = {'ao': [-2.0315024, -2.6830294, -5.38626492, -17.2991605, -44.7586581, -63.9201063], 'eq': 4, 'exp': [1, 2, 4, 9, 18.5, 35.5]}
- classmethod _alfa_sat(T)[source]
Auxiliary equation for the alfa coefficient for calculate the enthalpy along the saturation line
- Parameters:
T (float) – Temperature, [K]
- Returns:
alfa – alfa coefficient, [kJ/kg]
- Return type:
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, Eq.4
- classmethod _phi_sat(T)[source]
Auxiliary equation for the phi coefficient for calculate the entropy along the saturation line
- Parameters:
T (float) – Temperature, [K]
- Returns:
phi – phi coefficient, [kJ/kgK]
- Return type:
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, Eq.5
- classmethod _Liquid_Enthalpy(T)[source]
Auxiliary equation for the specific enthalpy for saturated liquid
- Parameters:
T (float) – Temperature, [K]
- Returns:
h – Saturated liquid enthalpy, [kJ/kg]
- Return type:
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, Eq.6
- classmethod _Vapor_Enthalpy(T)[source]
Auxiliary equation for the specific enthalpy for saturated vapor
- Parameters:
T (float) – Temperature, [K]
- Returns:
h – Saturated vapor enthalpy, [kJ/kg]
- Return type:
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, Eq.7
- classmethod _Liquid_Entropy(T)[source]
Auxiliary equation for the specific entropy for saturated liquid
- Parameters:
T (float) – Temperature, [K]
- Returns:
s – Saturated liquid entropy, [kJ/kgK]
- Return type:
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, Eq.8
- classmethod _Vapor_Entropy(T)[source]
Auxiliary equation for the specific entropy for saturated vapor
- Parameters:
T (float) – Temperature, [K]
- Returns:
s – Saturated liquid entropy, [kJ/kgK]
- Return type:
References
IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance September 1992, http://www.iapws.org/relguide/Supp-sat.html, Eq.9
- class iapws.iapws95.IAPWS95_PT(P, T)[source]
Derivated class for direct P and T input
- Attributes:
- Gas
- Gruneisen
- Hvap
- IntP
- Ks
- Kt
- Liquid
- P
- Pr
- Prandt
- Svap
- T
- Tr
- Vapor
- Z
- Z_rho
- a
- a0
- alfa
- alfap
- alfav
- betap
- betas
calculable
Check if inputs are enough to define state
- cp
- cp0
- cp0_cv
- cp_cv
- cv
- cv0
- dhdP_T
- dhdP_rho
- dhdT_P
- dhdT_rho
- dhdrho_P
- dhdrho_T
- dpdT_rho
- dpdrho_T
- drhodP_T
- drhodT_P
- epsilon
- f
- fi
- g
- g0
- gamma
- gamma0
- h
- h0
- hInput
- invT
- joule
- k
- kappa
- ks
- kt
- mu
- n
- nu
- phase
- rho
- rho0
- s
- s0
- sigma
- u
- u0
- v
- v0
- virialB
- virialC
- w
- x
Methods
__call__
(**kwargs)Make instance callable to can add input parameter one to one
calculo
()Calculate procedure
derivative
(z, x, y, fase)Wrapper derivative for custom derived properties where x, y, z can be: P, T, v, rho, u, h, s, g, a
fill
(fase, estado)Fill phase properties
from_list
(p1name, p1val, p2name, p2val)Speed up method using multiprocessing for multiple point calculation with a fixed input and changing other input parameter
- class iapws.iapws95.IAPWS95_Ph(P, h)[source]
Derivated class for direct P and h input
- Attributes:
- Gas
- Gruneisen
- Hvap
- IntP
- Ks
- Kt
- Liquid
- P
- Pr
- Prandt
- Svap
- T
- Tr
- Vapor
- Z
- Z_rho
- a
- a0
- alfa
- alfap
- alfav
- betap
- betas
calculable
Check if inputs are enough to define state
- cp
- cp0
- cp0_cv
- cp_cv
- cv
- cv0
- dhdP_T
- dhdP_rho
- dhdT_P
- dhdT_rho
- dhdrho_P
- dhdrho_T
- dpdT_rho
- dpdrho_T
- drhodP_T
- drhodT_P
- epsilon
- f
- fi
- g
- g0
- gamma
- gamma0
- h
- h0
- hInput
- invT
- joule
- k
- kappa
- ks
- kt
- mu
- n
- nu
- phase
- rho
- rho0
- s
- s0
- sigma
- u
- u0
- v
- v0
- virialB
- virialC
- w
- x
Methods
__call__
(**kwargs)Make instance callable to can add input parameter one to one
calculo
()Calculate procedure
derivative
(z, x, y, fase)Wrapper derivative for custom derived properties where x, y, z can be: P, T, v, rho, u, h, s, g, a
fill
(fase, estado)Fill phase properties
from_list
(p1name, p1val, p2name, p2val)Speed up method using multiprocessing for multiple point calculation with a fixed input and changing other input parameter
- class iapws.iapws95.IAPWS95_Ps(P, s)[source]
Derivated class for direct P and s input
- Attributes:
- Gas
- Gruneisen
- Hvap
- IntP
- Ks
- Kt
- Liquid
- P
- Pr
- Prandt
- Svap
- T
- Tr
- Vapor
- Z
- Z_rho
- a
- a0
- alfa
- alfap
- alfav
- betap
- betas
calculable
Check if inputs are enough to define state
- cp
- cp0
- cp0_cv
- cp_cv
- cv
- cv0
- dhdP_T
- dhdP_rho
- dhdT_P
- dhdT_rho
- dhdrho_P
- dhdrho_T
- dpdT_rho
- dpdrho_T
- drhodP_T
- drhodT_P
- epsilon
- f
- fi
- g
- g0
- gamma
- gamma0
- h
- h0
- hInput
- invT
- joule
- k
- kappa
- ks
- kt
- mu
- n
- nu
- phase
- rho
- rho0
- s
- s0
- sigma
- u
- u0
- v
- v0
- virialB
- virialC
- w
- x
Methods
__call__
(**kwargs)Make instance callable to can add input parameter one to one
calculo
()Calculate procedure
derivative
(z, x, y, fase)Wrapper derivative for custom derived properties where x, y, z can be: P, T, v, rho, u, h, s, g, a
fill
(fase, estado)Fill phase properties
from_list
(p1name, p1val, p2name, p2val)Speed up method using multiprocessing for multiple point calculation with a fixed input and changing other input parameter
- class iapws.iapws95.IAPWS95_Px(P, x)[source]
Derivated class for direct P and v input
- Attributes:
- Gas
- Gruneisen
- Hvap
- IntP
- Ks
- Kt
- Liquid
- P
- Pr
- Prandt
- Svap
- T
- Tr
- Vapor
- Z
- Z_rho
- a
- a0
- alfa
- alfap
- alfav
- betap
- betas
calculable
Check if inputs are enough to define state
- cp
- cp0
- cp0_cv
- cp_cv
- cv
- cv0
- dhdP_T
- dhdP_rho
- dhdT_P
- dhdT_rho
- dhdrho_P
- dhdrho_T
- dpdT_rho
- dpdrho_T
- drhodP_T
- drhodT_P
- epsilon
- f
- fi
- g
- g0
- gamma
- gamma0
- h
- h0
- hInput
- invT
- joule
- k
- kappa
- ks
- kt
- mu
- n
- nu
- phase
- rho
- rho0
- s
- s0
- sigma
- u
- u0
- v
- v0
- virialB
- virialC
- w
- x
Methods
__call__
(**kwargs)Make instance callable to can add input parameter one to one
calculo
()Calculate procedure
derivative
(z, x, y, fase)Wrapper derivative for custom derived properties where x, y, z can be: P, T, v, rho, u, h, s, g, a
fill
(fase, estado)Fill phase properties
from_list
(p1name, p1val, p2name, p2val)Speed up method using multiprocessing for multiple point calculation with a fixed input and changing other input parameter
- class iapws.iapws95.IAPWS95_Tx(T, x)[source]
Derivated class for direct T and x input
- Attributes:
- Gas
- Gruneisen
- Hvap
- IntP
- Ks
- Kt
- Liquid
- P
- Pr
- Prandt
- Svap
- T
- Tr
- Vapor
- Z
- Z_rho
- a
- a0
- alfa
- alfap
- alfav
- betap
- betas
calculable
Check if inputs are enough to define state
- cp
- cp0
- cp0_cv
- cp_cv
- cv
- cv0
- dhdP_T
- dhdP_rho
- dhdT_P
- dhdT_rho
- dhdrho_P
- dhdrho_T
- dpdT_rho
- dpdrho_T
- drhodP_T
- drhodT_P
- epsilon
- f
- fi
- g
- g0
- gamma
- gamma0
- h
- h0
- hInput
- invT
- joule
- k
- kappa
- ks
- kt
- mu
- n
- nu
- phase
- rho
- rho0
- s
- s0
- sigma
- u
- u0
- v
- v0
- virialB
- virialC
- w
- x
Methods
__call__
(**kwargs)Make instance callable to can add input parameter one to one
calculo
()Calculate procedure
derivative
(z, x, y, fase)Wrapper derivative for custom derived properties where x, y, z can be: P, T, v, rho, u, h, s, g, a
fill
(fase, estado)Fill phase properties
from_list
(p1name, p1val, p2name, p2val)Speed up method using multiprocessing for multiple point calculation with a fixed input and changing other input parameter
- class iapws.iapws95.D2O(**kwargs)[source]
Implementation of IAPWS Formulation for heavy water substance, for internal procedures, see MEoS base class
Examples
>>> hwater=D2O(T=300, rho=996.5560) >>> hwater.P, hwater.Liquid.cv, hwater.Liquid.w 0.0030675947 4.21191157 5332.04871
References
IAPWS, Release on the IAPWS Formulation 2017 for the Thermodynamic Properties of Heavy Water, http://www.iapws.org/relguide/Heavy-2017.pdf IAPWS, Revised Advisory Note No. 3: Thermodynamic Derivatives from IAPWS Formulations, http://www.iapws.org/relguide/Advise3.pdf
- Attributes:
- Gas
- Gruneisen
- Hvap
- IntP
- Ks
- Kt
- Liquid
- P
- Pr
- Prandt
- Svap
- T
- Tr
- Vapor
- Z
- Z_rho
- a
- a0
- alfa
- alfap
- alfav
- betap
- betas
calculable
Check if inputs are enough to define state
- cp
- cp0
- cp0_cv
- cp_cv
- cv
- cv0
- dhdP_T
- dhdP_rho
- dhdT_P
- dhdT_rho
- dhdrho_P
- dhdrho_T
- dpdT_rho
- dpdrho_T
- drhodP_T
- drhodT_P
- epsilon
- f
- fi
- g
- g0
- gamma
- gamma0
- h
- h0
- hInput
- invT
- joule
- k
- kappa
- ks
- kt
- mu
- n
- nu
- phase
- rho
- rho0
- s
- s0
- sigma
- u
- u0
- v
- v0
- virialB
- virialC
- w
- x
Methods
__call__
(**kwargs)Make instance callable to can add input parameter one to one
calculo
()Calculate procedure
derivative
(z, x, y, fase)Wrapper derivative for custom derived properties where x, y, z can be: P, T, v, rho, u, h, s, g, a
fill
(fase, estado)Fill phase properties
from_list
(p1name, p1val, p2name, p2val)Speed up method using multiprocessing for multiple point calculation with a fixed input and changing other input parameter
- name = 'heavy water'
- CASNumber = '7789-20-0'
- formula = 'D2O'
- synonym = 'deuterium oxide'
- Tc = 643.847
- rhoc = 355.9999698294
- Pc = 21.6618
- M = 20.027508
- Tt = 276.97
- Tb = 374.563
- f_acent = 0.364
- momentoDipolar = 1.9
- Fi0 = {'ao_exp': [0.010633, 0.99787, 2.1483, 0.3549], 'ao_hyp': [], 'ao_log': [1, 3], 'ao_pow': [-8.670994022646, 6.96033578458778], 'hyp': [], 'pow': [0, 1], 'titao': [0.47837452065475183, 2.632613027629235, 6.1334447469662825, 16.023993277906087]}
- _constants = {'R': 8.3144598, 'alfa3': [0.6014, 1.4723, 1.5305, 2.4297, 1.3086, 1.3528, 3.4456, 1.2645, 2.5547, 1.2148, 18.738, 18.677], 'beta3': [0.42, 2.4318, 1.2888, 8.271, 0.3673, 0.9504, 7.8318, 3.3281, 7.1753, 0.9465, 1177.0, 1167.0], 'c2': [1, 2, 2, 1, 2, 2], 'd1': [4, 1, 1, 2, 2, 3], 'd2': [1, 1, 3, 2, 2, 1], 'd3': [1, 3, 1, 3, 1, 1, 2, 2, 2, 1, 1, 1], 'epsilon3': [1.8663, 0.2895, 0.5803, 0.2236, 0.6815, 0.9495, 1.1158, 0.1607, 0.4144, 0.9683, 0.9488, 0.9487], 'gamma2': [1, 1, 1, 1, 1, 1], 'gamma3': [1.5414, 1.3794, 1.7385, 1.3045, 2.7242, 3.5321, 2.4552, 0.8319, 1.35, 2.5617, 1.0491, 1.0486], 'nr1': [0.012208206, 2.9695687, -3.7900454, 0.9410896, -0.92246625, -0.013960419], 'nr2': [-0.12520357, -5.553915, -4.9300974, -0.035947024, -9.3617287, -0.69183515], 'nr3': [-0.04561106, -2.245133, 8.6000607, -2.4841042, 16.44769, 2.7039336, 37.563747, -1.7760776, 2.2092464, 5.19652, 0.4210974, -0.3919211], 't1': [1.0, 0.6555, 0.9369, 0.561, 0.7017, 1.0672], 't2': [3.9515, 4.6, 5.159, 0.2, 5.4644, 2.366], 't3': [3.4553, 1.415, 1.5745, 3.454, 3.8106, 4.895, 1.43, 1.587, 3.79, 2.62, 1.9, 4.32]}
- _Pv = {'ao': [-8.0236, 2.3957, -42.639, 99.569, -62.135], 'exp': [1.0, 1.5, 2.75, 3.0, 3.2]}
- _rhoL = {'ao': [2.6406, 9.709, -18.058, 8.7202, -7.4487], 'eq': 1, 'exp': [0.3678, 1.9, 2.2, 2.63, 7.3]}
- _rhoG = {'ao': [-3.7651, -38.673, 73.024, -132.51, 75.235, -70.412], 'eq': 3, 'exp': [0.409, 1.766, 2.24, 3.04, 3.42, 6.9]}